Meddelande

Du befinner dig just nu på en äldre version av Pluggakuten, gamla.pluggakuten.se. Nya Pluggakuten lanserades den 6 februari 2017 och du finner forumet på www.pluggakuten.se.

På gamla.pluggakuten.se kan du fortfarande läsa frågorna och svaren som ställts, men du kan inte skapa ett nytt konto eller nya trådar. Är du redan medlem kan du däremot fortfarande logga in och svara i befintliga trådar. Nya frågor och nytt konto skapar du på det nya forumet, välkommen dit!

[GY]Andragradens ekvation

Anderssonfs
Medlem

Offline

Registrerad: 2016-04-19
Inlägg: 11

[GY]Andragradens ekvation

Hej!

Rubriken skulle kanske ha kunnat vara mera specifik men har aldrig stött på en sånhär uppgift förut så vet inte om de har något egen namn, hursom, uppgiften ser ut såhär:

u^2 -u
-------- + 2u
  -u

Uppgiften är att förenkla ekvationen så långt det går och visa alla mellansteg.

Tacksam för svar!

 
kwame
Medlem

Offline

Registrerad: 2012-03-26
Inlägg: 1093

Re: [GY]Andragradens ekvation

Hej, och välkommen till pluggakuten!

LaTeX ekvation

Såhär kan ditt första steg bli. Klarar du det härifrån? Och om det är något du inte hänger med på så är det bara att fråga!

 
Anderssonfs
Medlem

Offline

Registrerad: 2016-04-19
Inlägg: 11

Re: [GY]Andragradens ekvation

kwame skrev:

Hej, och välkommen till pluggakuten!

LaTeX ekvation

Såhär kan ditt första steg bli. Klarar du det härifrån? Och om det är något du inte hänger med på så är det bara att fråga!

Tack!

Jag försökte men lyckades tyvärr fortfarande inte hmm Jag förstår helt enkelt inte vad man skall göra på denhär sortens ekvationer. Skulle vara jätte tacksam om ni visade stegen enda till slutet smile

 
kwame
Medlem

Offline

Registrerad: 2012-03-26
Inlägg: 1093

Re: [GY]Andragradens ekvation

Vi kan börja stegvis. Vad är LaTeX ekvation ?

Vad är LaTeX ekvation?

 
Anderssonfs
Medlem

Offline

Registrerad: 2016-04-19
Inlägg: 11

Re: [GY]Andragradens ekvation

kwame skrev:

Vi kan börja stegvis. Vad är LaTeX ekvation ?

Vad är LaTeX ekvation?

-u och 1?

 
kwame
Medlem

Offline

Registrerad: 2012-03-26
Inlägg: 1093

Re: [GY]Andragradens ekvation

Det stämmer.

Nu skulle jag tro att du kan lösa uppgiften smile

 
Anderssonfs
Medlem

Offline

Registrerad: 2016-04-19
Inlägg: 11

Re: [GY]Andragradens ekvation

kwame skrev:

Det stämmer.

Nu skulle jag tro att du kan lösa uppgiften smile

Tror faktist jag fick den, sista steget blir -u +1 + 2u och svaret blir u + 1? big_smile
Tack så jätte mycket för hjälpen! Skulle inte fått den annars smile

 
kwame
Medlem

Offline

Registrerad: 2012-03-26
Inlägg: 1093

Re: [GY]Andragradens ekvation

Exakt, där löste du den! smile

Vet inte vad dina ambitioner är med matten, men vill du ha lite pluspoäng kan du skriva med att detta gäller då u inte är 0. LaTeX ekvation

Varför? Jo för att du har u^2/-u samt -(u)/(-u) och om u hade varit 0 så hade du haft division med 0, då är uttrycket odefinerat. https://sv.wikipedia.org/wiki/Division_med_noll

 
Henrik E
Medlem

Offline

Registrerad: 2015-09-22
Inlägg: 3189

Re: [GY]Andragradens ekvation

Och så är det inte en ekvation utan ett uttryck. En ekvation har ett likhetstecken.

 


Sidfot

Powered by PunBB
© Copyright 2002–2005 Rickard Andersson

Powered by Mattecentrum
 |  Denna sida använder cookies |  Kontakta oss |  Feedback |